Zinc and Magnesium Complexes Bearing Oxazoline-Derived Ligands and Their Application for Ring Opening Polymerization of Cyclic Esters
Author(s) -
Ranlong Duan,
Chenyang Hu,
Zhiqiang Sun,
Xuan Pang,
Xuesi Chen
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b01997
Subject(s) - polymerization , chemistry , zinc , ring opening polymerization , oxazoline , polymer chemistry , monomer , magnesium , lactide , ligand (biochemistry) , organic chemistry , catalysis , polymer , receptor , biochemistry
A family of different substituents aza(oxazoline) ligand-based zinc and magnesium complexes were synthesized. These complexes can catalyze ring opening polymerization of ε-caprolactone (ε-CL) and lactide (LA) to produce poly-ε-caprolactone and polylactide with good conversions. Polymerization studies showed that the zinc complexes 1a - 4a had moderate activity toward LA and ε-CL polymerization. In situ IR spectroscopy research of zinc complexes showed that the N-donor group-substituted complexes had higher activity than that of the O-ether donor group. The substituted analogies and the flexibility of the amino backbone had a distinct influence on the activity of LA and ε-CL polymerization. The alternates of zinc with magnesium produced complexes 5a - 8a , which achieved an obviously increased polymerization activity. Among these magnesium complexes, 7a showed the highest activity in the polymerization of LA. At [M]/[cat] = 1000, the reaction progress was stabilized in 5 min with up to 97% conversion of a monomer at ambient temperature.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom