z-logo
open-access-imgOpen Access
Chemical Recycling of Poly(bisphenol A carbonate) by Glycolysis under 1,8-Diazabicyclo[5.4.0]undec-7-ene Catalysis
Author(s) -
Eugenio Quaranta,
Clara Castiglione Minischetti,
Giuseppe Tartaro
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b01123
Subject(s) - depolymerization , chemistry , catalysis , bisphenol a , selectivity , carbonate , organic chemistry , tetrahydrofuran , dimethyl carbonate , solvent , glycerol , hydrogenolysis , bisphenol , polymer chemistry , propylene carbonate , monomer , reagent , polymer , electrochemistry , electrode , epoxy
The glycolysis reaction of poly(bisphenol A carbonate) (PC) has been explored under 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) catalysis as a potential route to valorize PC wastes by chemical recycling. The amidine base is an active catalyst of PC glycolysis and, under suitable conditions, promotes effectively and selectively the depolymerization of the polymeric material with 1,2-propanediol or glycerol to give the monomer bisphenol A (BPA) and the relevant cyclic carbonate. The depolymerization process has been investigated under solventless conditions, using diol/triol as the reagent and reaction medium, and also in an auxiliary solvent such as tetrahydrofuran (THF) that is able to dissolve the polymer. The influence of a few experimental parameters (temperature, catalyst load, and reaction time) on the selectivity to cyclic carbonate has been studied. High selectivity to cyclic carbonate has been attained by carrying out the depolymerization reaction in THF and using mild temperature conditions and a stoichiometric amount of polyol. The catalyst can be recovered from the reaction mixture as a BPA/DBU adduct and effectively recycled in a successive run.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom