z-logo
open-access-imgOpen Access
Cavitand-Decorated Silicon Columnar Nanostructures for the Surface Recognition of Volatile Nitroaromatic Compounds
Author(s) -
Cristina Tudisco,
Alessandro Motta,
T. Barboza,
Chiara Massera,
Antonino E. Giuffrida,
Roberta Pinalli,
Enrico Dalcanale,
Guglielmo G. Condorelli
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b01018
Subject(s) - cavitand , toluene , nitrobenzene , quinoxaline , chemistry , benzene , aromaticity , thermal stability , photochemistry , organic chemistry , molecule , supramolecular chemistry , catalysis
Nanocolumnar Si substrates (porous silicon (PSi)) have been functionalized with a quinoxaline-bridged (EtQxBox) cavitand in which the quinoxaline moieties are bonded to each other through four ethylendioxy bridges at the upper rim of the cavity. The receptor, which is known to selectively complex aromatic volatile organic compounds (VOCs) even in the presence of aliphatic compounds, has been covalently anchored to PSi. The larger surface area of PSi, compared to that of flat substrates, allowed one to study the recognition process of the surface-grafted receptors through different techniques: Fourier-transform infrared spectroscopy, thermal desorption, and X-ray photoelectron spectroscopy. The experiments proved that surface-grafted cavitands retain the recognition capability toward aromatic VOCs. In addition, the affinities of EtQxBox for various aromatic compounds (i.e., benzene, toluene, nitrobenzene, and p -nitrotoluene) have been studied combining density functional theory computations and thermal desorption experiments. Computational data based on the crystal structures of the complexes indicate that this cavitand possesses a higher affinity toward aromatic nitro-compounds compared to benzene and toluene, making this receptor of particular interest for the detection of explosive taggants. The results of computational studies have been validated also for the surface-grafted receptor through competitive recognition experiments. These experiments showed that EtQxBox-functionalized PSi can recognize nitrobenzene in the presence of a significant excess of aromatic vapors such as benzene (1:300) or toluene (1:100).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom