Surface Nanostructuration and Wettability of Electrodeposited Poly(3,4-ethylenedioxypyrrole) and Poly(3,4-propylenedioxypyrrole) Films Substituted by Aromatic Groups
Author(s) -
Djibril Diouf,
Thierry Darmanin,
Alioune Diouf,
Samba Yandé Dieng,
Frédéric Guittard
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b00871
Subject(s) - naphthalene , biphenyl , wetting , materials science , pyrene , monomer , polymer , fluorene , contact angle , chemical engineering , polymer chemistry , molecule , polymer science , organic chemistry , composite material , chemistry , engineering
In the aim to obtain parahydrophobic materials (both high contact angles and high hysteresis) for possible applications in water harvesting systems, we report the synthesis of novel 3,4-ethylenedioxypyrrole (EDOP) and 3,4-propylenedioxypyrrole (ProDOP) monomers with aromatic rings on the 3,4-alkylenedioxy bridge and the resulting conducting polymer films were prepared by electropolymerization. We show that the surface properties can be tuned by the nature of the aromatic ring (phenyl, biphenyl, diphenyl, naphthalene, fluorene, and pyrene) and the polymerizable core (EDOP or ProDOP). The best results are obtained with both EDOP and diphenyl, with which extremely high hydrophobic properties (up to 116°) are obtained, even if the polymers are intrinsically hydrophilic. These surfaces could be applied in the future, for example, in water harvesting systems or in water/oil separation membranes. The synthesis strategy is extremely interesting, and many other molecules will be envisaged in the future.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom