z-logo
open-access-imgOpen Access
α,ε-Hybrid Peptide Foldamers: Self-Assembly of Peptide with Trans Carbon–Carbon Double Bonds in the Backbone and Its Saturated Analogue
Author(s) -
Mintu Debnath,
Tanmay Das,
Debasish Podder,
Debasish Haldar
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b00832
Subject(s) - hydrogen bond , peptide , chemistry , stacking , foldamer , intramolecular force , cationic polymerization , molecule , intermolecular force , crystallography , self assembly , tetrapeptide , stereochemistry , organic chemistry , biochemistry
The effect of geometrically rigid trans α,β-unsaturated ε-amino acids on the structure, folding, and assembly of α,ε-hybrid peptide foldamers has been reported. From single-crystal diffraction analysis, the unsaturated tetrapeptide 1 has stapler-pin-like structure but without intramolecular hydrogen bond. The asymmetric unit has two molecules that are stabilized by multiple intermolecular hydrogen bonding interactions as well as π-π stacking interactions between the aromatic rings of 3-aminocinnamic acid. Peptide 1 does not form organogel. But on hydrogenation, peptide 1 provides the saturated α,ε-hybrid peptide foldamer 2 , which forms instant gel in most of the aromatic solvents. The gel exhibits high stability. The unsaturated peptide 1 has porous microsphere morphology, but saturated analogue 2 has ribbonlike morphology. The gel has been used efficiently for removal of cationic organic pollutants from waste water.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom