z-logo
open-access-imgOpen Access
Graphene/Nickel Oxide-Based Nanocomposite of Polyaniline with Special Reference to Ammonia Sensing
Author(s) -
Sarfaraz Ahmad,
Mohammad Mujahid Ali Khan,
Faiz Mohammad
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b00825
Subject(s) - polyaniline , nickel oxide , non blocking i/o , graphene , materials science , nanocomposite , raman spectroscopy , oxide , ammonia , chemical engineering , scanning electron microscope , nickel , transmission electron microscopy , conductivity , inorganic chemistry , nanotechnology , chemistry , composite material , polymer , organic chemistry , metallurgy , catalysis , physics , engineering , optics , polymerization
Polyaniline@graphene/nickel oxide (Pani@GN/NiO), polyaniline/graphene (Pani/GN), and polyaniline/nickel oxide (Pani/NiO) nanocomposites and polyaniline (Pani) were successfully synthesized and tested for ammonia sensing. Pani@GN/NiO, Pani/NiO, Pani/GN, and Pani were characterized using X-ray diffraction, UV-vis spectroscopy, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. The as-prepared materials were studied for comparative dc electrical conductivity and the change in their electrical conductivity on exposure to ammonia vapors followed by ambient air at room temperature. It was observed that the incorporation of GN/NiO in Pani showed about 99 times greater amplitude of conductivity change than pure Pani on exposure to ammonia vapors followed by ambient air. The fast response and excellent recovery time could probably be ascribed to the relatively high surface area of the Pani@GN/NiO nanocomposite, proper sensing channels, and efficaciously available active sites. Pani@GN/NiO was observed to show better selectivity toward ammonia because of the comparatively high basic nature of ammonia than other volatile organic compounds tested. The sensing mechanism was explained on the basis of the simple acid-base chemistry of Pani.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom