z-logo
open-access-imgOpen Access
O-Regioselective Synthesis with the Silver Salt Method
Author(s) -
Yigui Wang,
Ericka C. Barnes
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b00361
Subject(s) - regioselectivity , chemistry , bromide , salt (chemistry) , transition state , medicinal chemistry , ion , catalysis , inorganic chemistry , organic chemistry
The excellent O-regioselectivity of the glycosidation of the ambident 2-O-substituted 5-fluorouracil (5-FU) via the silver salt method is computationally investigated at the MP2/6-311++G(2d,p):DZP//B3LYP/6-31+G(d):DZP level of theory. The reactions studied are those between 1-bromo-1-deoxy-2,3,4,6-tetra- O -acetyl-α-d-glucopyranose and the silver salts of 5-FU, 2- O -butyl-5-FU, and 2- O -benzyl-5-FU. Two pathways are considered as follows: (A) one where the silver and bromide ion do not interact, and (B) another where the silver and bromide ion interact in the transition states. Because the O-reaction barriers are much lower (by 13.3-22.2 kcal/mol) than N-reaction barriers in both pathways, the O-regioselectivity of the silver salt method can be satisfactorily explained by either path A or path B. Furthermore, path B, where Ag and Br interact consistently, has lower activation barriers than the corresponding path A (by 6.8-17.4 kcal/mol) in both N- and O-reactions. This computational result can be attributed to the following reasons: (1) the speeding-up effect in Koenigs-Knorr reactions due to the addition of silver carbonate into the reaction mixture; (2) the halogens being pulled away by silver ions from halides, as proposed by Kornblum and co-workers; and (3) the oxocarbenium ion involvement in the glycosidation reactions. The large energy difference between N- and O-transition states originates from the association between Ag and N-(O-) of the ambident unit (-N3-C4=O4) that shows significant covalent character so that the O-reaction transition states of the silver salt method benefit from favorable ionic interaction (C + ···O - ) and favorable covalent interaction (Ag···N). These two favorable interactions are in agreement with the hard and soft acids and bases principle; the former is a hard-hard interaction and the latter is a soft-soft interaction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom