Transferable Potentials for Chloroethenes: Insights into Nonideal Solution Behavior of Environmental Contaminants
Author(s) -
Himanshu Goel,
Neeraj Rai
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b00044
Subject(s) - binary number , boiling point , force field (fiction) , thermodynamics , azeotrope , boiling , trichloroethylene , mist , field (mathematics) , chemistry , phase (matter) , chromatography , environmental chemistry , organic chemistry , mathematics , meteorology , physics , arithmetic , artificial intelligence , distillation , computer science , pure mathematics
Predicting the nonideal phase behavior of binary and multicomponent systems remains a significant challenge for particle-based simulations. Here, we develop a transferable force field for chloroethenes, common environmental contaminants, that can accurately model the vapor liquid phase equilibria including azeotrope formation. The new all-atom force field reproduces saturated liquid densities, saturated vapor pressures, boiling points, and critical properties within 1, 10, 1, and 1% of the experiment data, respectively. Furthermore, the vapor liquid equilibria of trichloroethylene and 1-propanol binary mixture, which forms a minimum boiling point azeotrope, is predicted with a reasonable accuracy. The microstructure of neat and binary systems is explored using pair correlation functions and spatial distribution functions. As the new force field is consistent with transferable potentials for phase equilibria (TraPPE) force field, it expands the applicability of TraPPE force field to chloroethenes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom