z-logo
open-access-imgOpen Access
Phenoxy-(Chloro)n-Boron Subnaphthalocyanines: Alloyed Mixture, Electron-Accepting Functionality, and Enhanced Solubility for Bulk Heterojunction Organic Photovoltaics
Author(s) -
Jeremy D. Dang,
David S. Josey,
Minh Trung Dang,
Timothy P. Bender
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b01892
Subject(s) - boron , heterojunction , solubility , photovoltaics , electron , materials science , solid solubility , organic solar cell , chemical engineering , optoelectronics , photovoltaic system , chemistry , organic chemistry , electrical engineering , physics , composite material , engineering , polymer , quantum mechanics
The first set of phenoxy BsubNc compounds, PhO-Cl n BsubNc and F 5 -Cl n BsubNc, was synthesized through an axial displacement reaction of Cl-Cl n BsubNc with phenol and pentafluorophenol (respectively). Like their precursor, the products were found to be an alloyed mixture of phenoxylated Cl n BsubNcs with random positioning in the solid state yet consistent frequency of bay position chlorination. The average bay position chlorine occupancy was determined to be 0.99 through single crystal diffraction of PhO-Cl n BsubNc. Although the phenoxylation of Cl-Cl n BsubNc did not influence the chromophore photophysical properties, the electrochemical behavior was found to be more stable. Phenoxylation yielded differences in organic photovoltaic (OPV) device metrics. Specifically, a significant increase in open circuit voltage ( V OC ) was observed, ultimately exceeding 1.0 V when phenoxylated Cl n BsubNcs were paired with alpha-sexithiophene (α-6T) in planar heterojunction OPVs. Phenoxylation enabled the first example of BsubNcs incorporated into polymer-based bulk heterojunction (BHJ) OPVs through enhanced solubility. Phenoxylated Cl n BsubNcs, when paired with poly-3-hexylthiophene, also showed high V OC in BHJ OPVs with broad spectral absorption up to 760 nm. In the BHJ case, simple phenoxy was shown to be a better axial substituent compared to pentafluorophenoxy. This study represents the first example of using Cl n BsubNcs with nonchlorine axial substituents in OPVs and demonstrates that phenoxylation has a significant impact on device metrics while enhancing solubility to enable incorporation of Cl n BsubNcs into BHJ OPVs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom