z-logo
open-access-imgOpen Access
Stimulatory Effects of Methyl-β-cyclodextrin on Spiramycin Production and Physical–Chemical Characterization of Nonhost@Guest Complexes
Author(s) -
Matteo Calcagnile,
Simona Bettini,
Fabrizio Damiano,
Adelfia Talà,
Salvatore Maurizio Tredici,
Rosanna Pagano,
Marco Di Salvo,
Luisa Siculella,
Daniela Fico,
Giuseppe Egidio De Benedetto,
Ludovico Valli,
Pietro Alifano
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b01766
Subject(s) - spiramycin , cyclodextrin , chemistry , antibiotics , antiparasitic , combinatorial chemistry , biochemistry , medicine , erythromycin , pathology
Spiramycin is a macrolide antibiotic and antiparasitic that is used to treat toxoplasmosis and various other infections of soft tissues. In the current study, we evaluated the effects of α-cyclodextrin, β-cyclodextrin, or methyl-β-cyclodextrin supplementation to a synthetic culture medium on biomass and spiramycin production by Streptomyces ambofaciens ATCC 23877. We found a high stimulatory effect on spiramycin production when the culture medium was supplemented with 0.5% (w/v) methyl-β-cyclodextrin, whereas α-cyclodextrin or β-cyclodextrin weakly enhanced antibiotic yields. As the stimulation of antibiotic production could be because of spiramycin complexation with cyclodextrins with effects on antibiotic stability and/or efflux, we analyzed the possible formation of complexes by physical-chemical methods. The results of Job plot experiment highlighted the formation of a nonhost@guest complex methyl-β-cyclodextrin@spiramycin I in the stoichiometric ratio of 3:1 while they excluded the formation of complex between spiramycin I and α- or β-cyclodextrin. Fourier-transform infrared spectroscopy measurements were then carried out to characterize the methyl-β-cyclodextrin@spiramycin I complex and individuate the chemical groups involved in the binding mechanism. These findings may help to improve the spiramycin fermentation process, providing at the same time a new device for better delivery of the antibiotic at the site of infection by methyl-β-cyclodextrin complexation, as it has been well-documented for other bioactive molecules.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom