z-logo
open-access-imgOpen Access
Integration of Magnetic Bead-Based Cell Selection into Complex Isolations
Author(s) -
Hannah M. Pezzi,
David J. Niles,
Jennifer L. Schehr,
David C. Beebe,
Joshua M. Lang
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b01427
Subject(s) - bead , magnetic bead , analyte , chromatography , biological system , chemistry , nanotechnology , materials science , biology , composite material
Magnetic bead-based analyte capture has emerged as a ubiquitous method in cell isolation, enabling the highly specific capture of target populations through simple magnetic manipulation. To date, no "one-size fits all" magnetic bead has been widely adopted leading to an overwhelming number of commercial beads. Ultimately, the ideal bead is one that not only facilitates cell isolation but also proves compatible with the widest range of downstream applications and analytic endpoints. Despite the diverse offering of sizes, coatings, and conjugation chemistries, few studies exist to benchmark the performance characteristics of different commercially available beads; importantly, these bead characteristics ultimately determine the ability of a bead to integrate into the user's assay. In this report, we evaluate bead-based cell isolation considerations, approaches, and results across a subset of commercially available magnetic beads (Dynabeads FlowComps, Dynabeads CELLection, GE Healthcare Sera-Mag SpeedBeads streptavidin-blocked magnetic particles, Dynabeads M-270s, Dynabeads M-280s) to compare and contrast both capture-specific traits (i.e., purity, capture efficacy, and contaminant isolations) and endpoint compatibility (i.e., protein localization, fluorescence imaging, and nucleic acid extraction). We identify specific advantages and contexts of use in which distinct bead products may facilitate experimental goals and integrate into downstream applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom