z-logo
open-access-imgOpen Access
Screening Platform Based on Robolid Microplate for Immobilized Enzyme-Based Assays
Author(s) -
Jiqing Yang,
Xiaoxia Liu,
Shucheng Sun,
Xin Liu,
Li Yang
Publication year - 2017
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b01078
Subject(s) - analyte , chromatography , reproducibility , urea , chemistry , detection limit , linear range , biochemistry
A facile, cost-effective, and high-throughput screening method was developed for enzyme-based assays based on Robolid/Microplate (RLMP) platform. The RLMP platform is constructed by immobilizing enzyme on commercial robolids and combining it with a standard 96-well microplate to achieve high-throughput analysis. The initiation and quenching of enzymatic reaction can be performed by simply sandwiching or unsealing the enzyme-immobilized robolids and the sample-containing microplate. This platform enables measurements of multiple target analytes simultaneously based on immobilized enzymatic reactions, with analysis time independent of the number of wells in the microplate. Using urea as the model analyte, we have shown that the RLMP platform exhibits large linear detection range of up to 10 mM, fast analysis time of 30 min/96 samples, as well as good reproducibility and stability. Measurements of urea in human urine and serum samples were performed using the RLMP platform and were compared with the commercial urea test kit. A good correlation was found between the two methods. This study shows that the present RLMP platform has promising prospects for detection of clinical markers and application in disease diagnosis and biochemical analysis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom