z-logo
open-access-imgOpen Access
Fabrication of a Nondegradable Si@SiOx/n-Carbon Crystallite Composite Anode for Lithium-Ion Batteries
Author(s) -
Hyeon-Woo Yang,
Hyunyoung Park,
Hee Gyoun Lee,
Woo Seung Kang,
Sun-Jae Kim
Publication year - 2017
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b00547
Subject(s) - anode , materials science , crystallite , faraday efficiency , composite number , carbon fibers , oxide , lithium (medication) , graphene , chemical engineering , nanotechnology , composite material , electrode , metallurgy , chemistry , medicine , engineering , endocrinology
A Si-based anode maintaining its high electrochemical performance with cycles was prepared for the nondegradable lithium-ion battery. Nanoscaled Si particles were mechanochemically coupled with approximately 3 nm thick oxide layer and n-carbon (nanoscaled carbon) crystallites to overcome silicon's inherent problems of poor electronic conductivity and severe volume change during lithiation and delithiation cycling. The oxide layer of SiO x was chemically formed via a controlled oxygen environment during the process; meanwhile, the n-carbon crystallites were obtained by mechanical fragmentation from ∼70 μm sized multilayered graphene powders with a low degree of agglomeration. The Si-based composite anode, processed by the above-mentioned mechanochemical coupling, maintained a superior discharge capacity of 1767 mA h/g through 100 cycles with a Coulombic efficiency exceeding 98% at a current density of 100 mA/g. According to our current study, the coupling of the Si particles with oxide layer and n-carbon crystallites was found to be a significantly efficient way to prevent the performance degradation of the Si-based anode.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom