Fabrication of a Nondegradable Si@SiOx/n-Carbon Crystallite Composite Anode for Lithium-Ion Batteries
Author(s) -
Hyeon-Woo Yang,
Hyunyoung Park,
Hee Gyoun Lee,
Woo Seung Kang,
Sun-Jae Kim
Publication year - 2017
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.7b00547
Subject(s) - anode , materials science , crystallite , faraday efficiency , composite number , carbon fibers , oxide , lithium (medication) , graphene , chemical engineering , nanotechnology , composite material , electrode , metallurgy , chemistry , medicine , engineering , endocrinology
A Si-based anode maintaining its high electrochemical performance with cycles was prepared for the nondegradable lithium-ion battery. Nanoscaled Si particles were mechanochemically coupled with approximately 3 nm thick oxide layer and n-carbon (nanoscaled carbon) crystallites to overcome silicon's inherent problems of poor electronic conductivity and severe volume change during lithiation and delithiation cycling. The oxide layer of SiO x was chemically formed via a controlled oxygen environment during the process; meanwhile, the n-carbon crystallites were obtained by mechanical fragmentation from ∼70 μm sized multilayered graphene powders with a low degree of agglomeration. The Si-based composite anode, processed by the above-mentioned mechanochemical coupling, maintained a superior discharge capacity of 1767 mA h/g through 100 cycles with a Coulombic efficiency exceeding 98% at a current density of 100 mA/g. According to our current study, the coupling of the Si particles with oxide layer and n-carbon crystallites was found to be a significantly efficient way to prevent the performance degradation of the Si-based anode.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom