
Preparation and Perfomance of an Aging-Resistant Nanocomposite Film of Binary Natural Polymer–Graphene Oxide
Author(s) -
Xin Chen,
Zao Yi,
Jiehong Lei,
Huan Yi,
Weitang Yao,
Wenkun Zhu,
Tao Duan
Publication year - 2016
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.6b00291
Subject(s) - materials science , polymer , nanocomposite , composite material , polymer nanocomposite , graphene , oxide , ultimate tensile strength , casting , chemical engineering , nanotechnology , engineering , metallurgy
As one of the materials having a bionic structure, nacrelike layered composites, inspired by their natural hybrid structures, have been studied via a variety of approaches. Graphene oxide (GO), which differed from inert graphene, was used as a new building block because it could be readily chemically functionalized. Rather than natural polymers, synthetic polymers were most commonly used to fabricate nacrelike GO-polymer materials. However, naturally occurring polymers complied more easily with the requirements of biocompatibility, biodegradability, and nontoxicity. Here, a simple solution-casting method was used to mimic natural nacre and fabricate a self-assembled and aging-resistant binary natural polymer, (κ-carrageenan (κ-CAR)-Konjac glucomannan (KGM))-GO nanocomposites, with varying GO concentrations. The investigation results revealed that κ-CAR-KGM and GO mostly self-assemble via the formation of intermolecular hydrogen bonds to form a well-defined layered structure. The mechanical properties of the natural polymer-GO films were improved significantly compared to those of pure natural polymer films. With the addition of 7.5 wt % GO, the tensile strength (TS) and Young's modulus were found to increase by 129.5 and 491.5%, respectively. In addition, the composite films demonstrated high reliability and aging resistance as well as a definite TS after cold and hot shock and ozone aging tests, especially showing a superior ozone resistance. The composite films can potentially be used as biomaterials or packing materials.