z-logo
open-access-imgOpen Access
Research on the Construction of Bispecific-Targeted Sustained-Release Drug-Delivery Microspheres and Their Function in Treatment of Hepatocellular Carcinoma
Author(s) -
Zi Li Huang,
Feng Li,
Jun Tao Zhang,
Xiang Jun Shi,
Yanhua Xu,
Xiu-Yan Huang
Publication year - 2022
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.2c02584
Subject(s) - epithelial cell adhesion molecule , hepatocellular carcinoma , drug delivery , targeted drug delivery , cancer research , medicine , drug , liposome , targeted therapy , cancer , pharmacology , nanotechnology , materials science
Lenvatinib (LEN) is approved as one of the commonly used drugs in the treatment of hepatocellular carcinoma (HCC). It is recognized to be a novel therapeutic choice for the direct and targeted delivery of effective drugs to HCC tumor sites. The key to the proposed method lies in the requirement for efficient targeted drug delivery carriers with targeting performance to deliver effective drugs directly and safely to tumor lesions. Methods : Here, magnetic liposomes (MLs) were modified by phosphatidylinositol proteoglycan 3 (GPC3) and epithelial cell adhesion molecules (EpCAMs). Subsequently, bispecific-targeted sustained-release drug-loaded microspheres containing LEN (GPC3/EpCAM-LEN-MLs) were constructed. In addition, both cytotoxicity and magnetic resonance imaging (MRI) analyses were performed to establish a mouse model and further perform corresponding performance assessments. Results: The corresponding results showed that GPC3/EpCAM-LEN-MLs were spherical-shaped and evenly dispersed. The encapsulation and drug-loading efficiencies were 91.08% ± 1.83% and 8.22% ± 1.24%, respectively. Meanwhile, GPC3/EpCAM-LEN-MLs showed a high inhibition rate on the proliferation of HCC cells and significantly increased their apoptosis. Furthermore, MRI revealed that the system possessed the function of tracking and localizing tumor cells, and animal experiments verified that it could exert the function of disease diagnosis. Conclusions: Our experiments successfully constructed a safe and efficient bispecific-targeted sustained-release drug delivery system for HCC tumor cells. It provides a useful diagnostic and therapeutic scheme for the clinical diagnosis and targeted therapy of HCC. Moreover, it can be used as a potential tumor-specific MRI contrast agent for the localization and diagnosis of malignant tumors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here