Self-Assembly of Miktoarm Star Polyelectrolytes in Solutions with Various Ionic Strengths
Author(s) -
Bin Li,
YongLei Wang
Publication year - 2022
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.2c01317
Subject(s) - polyelectrolyte , ionic bonding , chemical physics , ionic strength , self assembly , dissociation (chemistry) , star (game theory) , materials science , micelle , chemistry , nanotechnology , chemical engineering , polymer chemistry , aqueous solution , physics , polymer , ion , organic chemistry , composite material , astrophysics , engineering
We studied the self-assembly of miktoarm star polyelectrolytes with different numbers of arms in solutions with various ionic strengths using coarse-grained molecular dynamic simulations. Spherical micelles are obtained for star polyelectrolytes with fewer arms, whereas wormlike clusters are obtained for star polyelectrolytes with more arms at a low ionic strength environment, with hydrophilic arms showing a stretched conformation. The number of clusters shows an overall decreasing tendency with increasing the number of arms in star polyelectrolytes due to strong electrostatic coupling between polycations and polyanions. The formation of wormlike clusters follows an overall stepwise pathway with an intermittent association-dissociation process for star polyelectrolytes with weak electrostatic coupling. These computational results can provide relevant physical insights to understand the self-assembly mechanism of star polyelectrolytes in solvents with various ionic strengths and to design star polyelectrolytes with functional groups that can fine-tune self-assembled structures for specific applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom