Open Access
Surface Functionalization of Graphene Oxide with Hyperbranched Polyamide-Amine and Microcrystalline Cellulose for Efficient Adsorption of Heavy Metal Ions
Author(s) -
Zhihang Liu,
Qian Wang,
Xiujie Huang,
Xueren Qian
Publication year - 2022
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.1c06647
Subject(s) - adsorption , metal ions in aqueous solution , surface modification , thermogravimetric analysis , microcrystalline cellulose , x ray photoelectron spectroscopy , polyamide , oxide , materials science , metal , inorganic chemistry , cellulose , polymer chemistry , chemical engineering , chemistry , organic chemistry , engineering
Graphene oxide (GO)-based adsorbents have received attention in the removal of heavy metal ions in wastewater due to its large specific surface area and oxygen-containing functional groups, which can enhance the interaction between GO and heavy metal ions. Many researchers are seeking economical and effective strategies to further improve the adsorption capacity of GO. In this study, hyperbranched polymers and cellulose were used to surface functionalize GO for the efficient adsorption of heavy metal ions. First, hyperbranched polyamide-amine (HPAMAM) functionalized GO was fabricated by the formation of an amide bond between the carboxyl group of GO and the amino group of HPAMAM, increasing the active groups on the GO surface and enhancing the affinity with heavy metal ions. Then, dialdehyde cellulose (DAC) obtained through the oxidation of microcrystalline cellulose was grafted onto GO/HPAMAM by forming a Schiff-based structure between the amino group of HPAMAM and aldehyde group of DAC. Interestingly, DAC formed micro/nano bumps on GO, which was beneficial to increase the hydroxyl number and contact area with heavy metal ions. The Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) results confirmed the successful synthesis of GO/HPAMAM/DAC. The obtained GO/HPAMAM/DAC adsorbent exhibited strong adsorption capacity and good cycle stability for heavy metal ions. The maximum adsorption capacities of Pb(II), Cd(II), and Cu(II) were 680.3, 418.4, and 280.1 mg/g at 298 K, which were better than those of most adsorbents reported. A pseudo-second-order kinetic model could well-describe the Pb(II), Cd(II), and Cu(II) adsorption onto GO/HPAMAM/DAC, and the equilibrium data fitted well with the Langmuir isotherm model. The adsorption of Pb(II), Cd(II), and Cu(II) was mainly attributed to the chelation or complexation of nitrogen- and oxygen-containing groups on the GO/HAPAMAM/DAC adsorbent. This study may provide a novel strategy for improving the adsorption performance of GO with hyperbranched polymers and cellulose.