
Effects of the Surface Structure on the Water Transport Behavior in PEMFC Carbon Fiber Papers
Author(s) -
Tongqing Qu,
Xin Huang,
Biao Wang
Publication year - 2022
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.1c06304
Subject(s) - wetting , tetrafluoroethylene , materials science , laplace pressure , microporous material , penetration (warfare) , water transport , composite material , coating , chemical engineering , fiber , volumetric flow rate , surface tension , water flow , polymer , thermodynamics , environmental engineering , physics , operations research , copolymer , engineering
In this paper, three kinds of carbon fiber papers (CFPs), including pure CFP, poly(tetrafluoroethylene) (PTFE)-treated CFP (PTFE-CFP), and microporous layer (MPL)-coated CFP (MPL-CFP), were used to investigate the effects of the surface structure on the water transport behavior in CFPs. Compared to pure CFP, applying PTFE on the CFP increases the breakthrough pressure by 0.2 times, while it decreases the water flow rate at initial penetration by 0.06 times, owing to the strong hydrophobicity of PTFE-CFP. The pore diameter of MPL-CFP reduces sharply after coating the MPL, which leads to increasing breakthrough pressure by 0.6 times. The Young-Laplace equation is applied to study the relationship between the structure (wettability and pore-size distribution) of CFPs and the water transport behavior (breakthrough pressure), and the results show that in addition to wettability and pore size, the pore-size gradient also plays a crucial role in water transport.