z-logo
open-access-imgOpen Access
Optimizing the Fabric Architecture and Effect of γ-Radiation on the Mechanical Properties of Jute Fiber Reinforced Polyester Composites
Author(s) -
Abu Yousuf Mohammad Anwarul Azim,
Shah Alimuzzaman,
Forkan Sarker
Publication year - 2022
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.1c06241
Subject(s) - composite material , materials science , flexural strength , ultimate tensile strength , composite number , flexural modulus , fiber , modulus , woven fabric , plain weave , natural fiber , yarn
The fiber architecture can significantly influence the rate of impregnation of a resin in making composites and the load-bearing ability of individual fibers on testing of the loading directions. Moreover, achieving the maximum mechanical performance of a natural fiber composite selection of yarn liner density and optimization of fabric structure and further modification of the composites remains a great challenge for the composite research community. In this study, a number of jute-based woven derivatives (plain, 2/1 twill, 3/1 twill, zigzag based on a 2/2 twill, and diamond based on a 2/2 twill) have been constructed from similar linear densities of yarn. The effect of the fabric architecture and further modification of optimized composites by applying γ-radiation is also explained in this study. The experimental results show a 54% increase in tensile strength, a 75% increase in tensile modulus, a 69% increase in flexural strength, a 124% increase in flexural modulus, and 64% increase in impact strength of twill (3/1) structured jute fiber polyester composites in comparison to other plain and twill structured composites. A further mechanical improvement of around 20-30% is possible for the optimized twill structured composites by applying γ-radiation on the composites. An FTIR, TGA, and SEM study confirms the chemical, thermal, and fractographic changes after applying the modification of composites.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here