Open Access
Silver-Doped Cadmium Selenide/Graphene Oxide-Filled Cellulose Acetate Nanocomposites for Photocatalytic Degradation of Malachite Green toward Wastewater Treatment
Author(s) -
M.K. Ahmed,
Ahmed Esmail Shalan,
M. Afifi,
M. M. ElDesoky,
S. LancerosMéndez
Publication year - 2021
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.1c02667
Subject(s) - photocatalysis , nanocomposite , cadmium selenide , materials science , malachite green , graphene , chemical engineering , oxide , cellulose acetate , selenide , doping , cadmium , inorganic chemistry , adsorption , nanotechnology , chemistry , cellulose , quantum dot , metallurgy , organic chemistry , selenium , catalysis , optoelectronics , engineering
Silver-doped cadmium selenide/graphene oxide (GO) (Ag-CdSe/GO) nanocomposites have been synthesized, loaded in cellulose acetate (CA) to form Ag-CdSe/GO@CA heterostructure nanofibers, and characterized in terms of structural, morphological, photocatalytic properties, among others. The photocatalytic degradation of malachite green (MG) was estimated using cadmium selenide-filled CA (CdSe@CA), silver-doped cadmium selenide-filled CA (Ag-CdSe@CA), cadmium selenide/GO-filled CA (CdSe/GO@CA), and silver-doped cadmium selenide/GO-filled CA (Ag-CdSe/GO@CA) nanocomposite materials. The Ag-CdSe/GO@CA nanocomposites exhibit and retain an enhanced photocatalytic activity for the degradation of MG dye. This amended performance is associated with the multifunctional supporting impacts of GO, Ag, and CA on the composite structure and properties. The superior photocatalytic activity is related to the fact that both Ag and GO can act as electron acceptors that boost the separation efficiency of photogenerated carriers and the loading of the combined nanocomposite (Ag-CdSe@GO) on CA nanofibers, which can augment the adsorption of electrons and holes and facilitate the movement of carriers. The stability of Ag-CdSe/GO@CA nanocomposite photocatalysts demonstrates suitable results even after five recycles. This study establishes an advanced semiconductor-based hybrid nanocomposite material for efficient photocatalytic degradation of organic dyes.