z-logo
open-access-imgOpen Access
Synthesis and Characterization of Thiolated Gum Ghatti as a Novel Excipient: Development of Compression-Coated Mucoadhesive Tablets of Domperidone
Author(s) -
Vivek Puri,
Ameya Sharma,
Pradeep Kumar,
Inderbir Singh,
Kampanart Huanbutta
Publication year - 2021
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.1c01328
Subject(s) - mucoadhesion , chemistry , excipient , drug delivery , polymer , thioglycolic acid , nuclear chemistry , organic chemistry , chromatography , drug carrier
Mucoadhesive polymers represent a major part of site-specific and localized retention strategies in oral drug delivery. The present research was designed to synthesize and characterize a novel mucoadhesive carbohydrate polymer (thiolated gum ghatti; TGG), which was employed to formulate mucoadhesive tablets of domperidone using an industrially viable compression coating technique. Thiolation of gum ghatti was achieved by the ester formation (esterification) between the hydroxyl group and the carboxyl group of gum ghatti and thioglycolic acid. TGG was characterized by various physicochemical techniques such as FTIR, XRD, SEM, and DSC. In rheological studies, the observed viscosities of pure gum mucin were 45.45 and 71.75 mPa·s and those of the thiolated gum were 78.7 and 112.58 mPa·s, respectively, in water and simulated gastric fluid. A significant increase in viscosity for thiolated gum may be attributed to increased macromolecular interactions responsible for enhanced mucoadhesive potential of thiolated gum. In silico studies corroborate the role of mucin gum interaction and energetic stabilization for enhanced mucoadhesion properties of thiolated gum. Ex vivo mucoadhesion strength of gum ghatti- and TGG-coated tablets was found to be ranging between 45.77 ± 1.49 and 88.16 ± 1.75 and 115.32 ± 2.36 and 184.65 ± 2.07 mN, respectively. In an acute oral toxicity study, TGG did not show any toxicity on the vital organs of the Wistar rat and proved to be a safe polymer. TGG may be regarded as a promising polymer for developing different mucoadhesive drug delivery systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here