z-logo
open-access-imgOpen Access
Pore Structure Characterization of Eocene Low-Permeability Sandstones via Fractal Analysis and Machine Learning: An Example from the Dongying Depression, Bohai Bay Basin, China
Author(s) -
Yan Lü,
Keyu Liu
Publication year - 2021
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.1c01015
Subject(s) - geology , fractal , permeability (electromagnetism) , fractal dimension , porosity , reservoir modeling , structural basin , petrology , oil shale , mineralogy , geotechnical engineering , geomorphology , chemistry , paleontology , mathematical analysis , biochemistry , mathematics , membrane
Poroperm analysis, mercury injection capillary pressure (MICP), and nuclear magnetic resonance (NMR) measurements were performed to delineate the pore structures and fractal behaviors of the Eocene low-permeability sandstones in the Dongying Depression, Bohai Bay Basin, China. Three types of pore structures (I, II, and III) have been classified by applying the self-organizing map (SOM) clustering model. Comparative analysis of three different fractal models indicates that the MICP tubular model and NMR model are quite effective for pore structure characterization. The results show that the reservoirs generally exhibit high fractal dimensions, indicative of complex pore structures. The presence of small pore throats is primarily responsible for the heterogeneities and complexities in the Eocene low-permeability sandstones. A modified Winland model was established for the permeability estimation using MICP data. Different from high-permeability reservoirs or unconventional (e.g., shale and tight formation) reservoirs, r 10 is the best parameter for permeability estimation, indicating that the permeability of the Eocene low-permeability sandstones is largely controlled by the large pore systems. Additionally, a porosity model derived from movable fluids using NMR data has been established and provided better prediction effect compared with the classic Coates and Schlumberger Doll Research (SDR) models. Fractal analysis and permeability estimation are shown to be quite effective for investigating microscopic behaviors and in predicting the reservoir quality of low-permeability sandstone reservoirs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here