
Mineral and Technological Features of Magnetite–Hematite Ores and Their Influence on the Choice of Processing Technology
Author(s) -
Н. В. Николаева,
Т. Н. Александрова,
E. L. Chanturiya,
Anastasia Afanasova
Publication year - 2021
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.1c00129
Subject(s) - beneficiation , hematite , magnetite , iron ore , metallurgy , gangue , magnetic separation , mineral processing , mineral , materials science , mineralogy , chemistry
Analysis of the current technical solutions for the processing of iron ores showed that the high-grade ores are directly exposed to metallurgical processing; by comparison, low-grade ores, depending on the mineralogical and material composition, are directed to beneficiation including gravitational, magnetic, and flotation processes or their combination. Obtaining high-quality concentrates with high iron content and low content of impurities from low-grade iron ores requires the maximum possible liberation of valuable minerals and a high accuracy of separating features (difference in density, magnetic susceptibility, wettability, etc.). Mineralogical studies have established that the main iron-bearing mineral is hematite, which contains 69.02 to 70.35% of iron distributed in the ore. Magnetite and hydrogoethite account for 16.71-17.74 and 8.04-10.50% of the component, respectively; the proportion of iron distributed in gangue minerals and finely dispersed iron hydroxides is very insignificant. Iron is mainly present in the trivalent form-Fe 2 O 3 content ranges from 50.69 to 51.88%; bivalent iron is present in small quantities-the FeO content in the samples ranges from 3.53 to 4.16%. The content of magnetic iron is 11.40-12.67%. Based on the obtained results by the investigation of the features of magnetite-hematite ores from the Mikhailovskoye deposit, a technological scheme of magneto-flotation beneficiation was proposed, which allows producing iron concentrates with 69% of iron content and less than 2.7% silicon dioxide for the production of pellets with subsequent metallization.