
Strong Adsorption of Phosphorus by ZnAl-LDO-Activated Banana Biochar: An Analysis of Adsorption Efficiency, Thermodynamics, and Internal Mechanisms
Author(s) -
Anyu Li,
Hua Deng,
Yuqing Wu,
Chenghui Ye,
Yanhong Jiang
Publication year - 2021
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c05674
Subject(s) - adsorption , biochar , fourier transform infrared spectroscopy , langmuir adsorption model , chemistry , phosphorus , materials science , chemical engineering , inorganic chemistry , organic chemistry , pyrolysis , engineering
Zn-Al layered bimetallic composites were prepared by ethanol strengthening and co-precipitation using banana straw as a raw material. A high-efficiency phosphorus adsorbent (ZnAl-LDO-BC) was obtained by calcination at a high temperature. The kinetics and thermodynamics of phosphorus adsorption on ZnAl-LDO-BC were then studied. The results showed that the adsorption process of ZnAl-LDO-BC corresponds with the pseudo-second-order (PSO) kinetic equation and the Langmuir model. The theoretical maximum adsorption capacity of ZnAl-LDO-BC is 111.11 mg/g (at 45 °C, 500 mg/L phosphorus initial concentration). The influence of anions on phosphorus adsorption decreased in strength in the following order: CO 3 2- > SO 4 2- > NO 3 - . Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) were used to characterize the adsorption of phosphorus on ZnAl-LDO-BC and showed that ZnAl-LDO-BC can efficiently adsorb phosphorus. The adsorption mechanism utilizes both O-H and C-H on the surface of ZnAl-LDO-BC for the adsorption of PO 4 3- , forming Zn 3 (PO 4 ) 2 · 4 H 2 O via complexation precipitation; additionally, biochar surface adsorption and interlayer adsorption are indispensable forms of phosphate adsorption. With the systematic study of phosphorus adsorption by ZnAl-LDO-BC, a novel green technology was developed for addressing phosphorus pollution.