z-logo
open-access-imgOpen Access
Complete Electrolytic Plastron Recovery in a Low Drag Superhydrophobic Surface
Author(s) -
Ben P. Lloyd,
Philip N. Bartlett,
R.J.K. Wood
Publication year - 2021
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c03466
Subject(s) - wetting , materials science , drag , composite material , curvature , underwater , nanotechnology , mechanics , geology , geometry , physics , oceanography , mathematics
We present a superhydrophobic surface capable of recovering the lubricious gas layer known as the “plastron” from a fully wetted state underwater. It is shown that full plastron recovery is possible without a second layer of structural hierarchy, which is prone to irreversible wetting transitions. This allows us to use a cheap, fast, and potentially scalable method to fabricate the surface from silicone and carbon black in a molding process. We demonstrate plastron recovery from the fully wetted state and immediate plastron recovery after pressure-induced wetting transitions. The wetting state can be measured remotely and quickly by measuring the capacitance. The slip length is measured as ∼135 μm, agreeing well with the theory given the geometry of the surface. The ability of the surface to conform to small radii of curvature and withstand damage from loading is also demonstrated. The work presented here could allow superhydrophobic surfaces to reduce drag on ships and in pipes where the plastron would otherwise rapidly dissolve.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom