z-logo
open-access-imgOpen Access
Process Modelling of Chemical Looping Combustion of Paper, Plastics, Paper/Plastic Blend Waste, and Coal
Author(s) -
Zainab T. Yaqub,
Bilainu Oboirien
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c02880
Subject(s) - polyvinyl chloride , chemical looping combustion , polyethylene , coal , yield (engineering) , combustion , materials science , polypropylene , solid fuel , polystyrene , chemical engineering , waste management , polyethylene terephthalate , chemistry , composite material , organic chemistry , polymer , engineering
Chemical looping combustion (CLC) is a novel carbon capture and storage technology that can be used in the proper disposal of municipal solid waste when used as a solid fuel. In this study, the results of the CLC of paper, plastics, and paper/plastic blends were compared with CLC of South African coal using Chemcad software. The simulation was done for two different CLC processes, namely, chemical looping oxygen uncoupling (CLOU) and in situ gasification CLC (IG-CLC). The results demonstrated that coal at 66% had a lower CO 2 yield than paper (86%) but a higher yield than all the plastic samples in CLOU (3356%) and an equal CO 2 yield in paper and all plastic samples in IG-CLC. Furthermore, coal had a lower CO 2 gas yield than all the optimum blends (72-85%) for CLOU and an equal yield with the entire paper/plastic blend in IG-CLC. On combustion efficiency, coal has a lower combustion efficiency at 80% than paper and polyvinyl chloride (PVC) at 90 and 96%, respectively, but a higher efficiency than other plastic samples that are between 30 and 70% in CLOU while in IG-CLC, it had a lower efficiency than paper, PVC, and polyethylene terephthalate and higher efficiency than high-density polyethylene, low-density polyethylene, polypropylene, and polystyrene. For paper/plastic blends, coal has higher combustion efficiency than all the paper/plastic blends in both CLOU and IG-CLC processes except for the paper/PVC where the combustion efficiency was higher than coal.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom