Norbornene-Functionalized Plant Oils for Biobased Thermoset Films and Binders of Silicon-Graphite Composite Electrodes
Author(s) -
Duy Le,
Chanatip Samart,
JyhTsung Lee,
Kotohiro Nomura,
Suwadee Kongparakul,
Suda Kiatkamjornwong
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c02645
Subject(s) - thermosetting polymer , materials science , norbornene , graphite , composite number , composite material , silicon , polymer chemistry , polymer science , polymer , copolymer , metallurgy
We herein report the functionalization of plant oil with norbornene (NB) and subsequent polymerization to prepare biobased thermoset films and biobased binders for silicon/mesocarbon microbead (MCMB) composite electrodes for use in lithium-ion batteries. A series of NB-functionalized plant oils were prepared as biobased thermoset films via ring-opening metathesis polymerization (ROMP) in the presence of a second-generation Grubbs catalyst with tunable thermomechanical properties. Increasing the catalyst loading and cross-linking agent increased cross-link density, storage modulus ( E '), and glass transition temperature ( T g ), while the numbers of unreacted or oligomeric components in the films were reduced. High number of NB rings per triglyceride in the plant oil encouraged monomer incorporation to form a polymer network, therefore accounting for the high T g and E ' values. Furthermore, the NB-functionalized plant oil and 2,5-norbornadiene (NBD) were copolymerized as bioderived binders for silicone/MCMB composite electrodes of lithium-ion batteries via ROMP during electrode preparation. Cell performance investigation showed that the silicone/MCMB composite electrode bearing the NBD-cross-linked NB-functionalized plant oil binder exhibited a higher C-rate and cycle-life performance than that using a conventional poly(vinylidene fluoride) (PVDF) binder. Finally, the electrode based on the bioderived binder exhibited a high specific charge capacity of 620 mA h g -1 at 0.5 C.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom