z-logo
open-access-imgOpen Access
Comparative Glucose and Xylose Coutilization Efficiencies of Soil-Isolated Yeast Strains Identify Cutaneotrichosporon dermatis as a Potential Producer of Lipid
Author(s) -
Laiyou Wang,
Dongmei Wang,
Zhili Zhang,
Shuang Cheng,
Bingbing Liu,
Chunyan Wang,
Ruige Li,
Shuxian Guo
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c02089
Subject(s) - xylose , hydrolysate , sugar , food science , chemistry , strain (injury) , biomass (ecology) , yeast , carbohydrate , lipid accumulation , biochemistry , biology , fermentation , hydrolysis , agronomy , anatomy
Glucose and xylose are the major hydrolysates of lignocellulose, and therefore, it is of great implication to identify the microbes involved in simultaneous utilization of glucose and xylose. In this study, the strain ZZ-46 isolated from the soil of Nanyang, China, could simultaneously assimilate glucose and xylose efficiently to produce lipid. Upon cultivation with a 2:1 glucose/xylose mixture as the carbon source for 144 h, the cell biomass, lipid concentration, lipid content, and lipid yield of ZZ-46 reached 19.85 ± 0.39 g/L, 9.53 ± 0.60 g/L, 48.05 ± 3.51%, and 0.142 ± 0.003 g/g sugar, respectively. Moreover, C16 and C18 fatty acids were the main constituents of lipid produced by ZZ-46. In addition, ZZ-46 was identified as Cutaneotrichosporon dermatis by the morphology features and phylogenetic analyses. The strain ZZ-46 would have good perspective in practical application for converting lignocellulose into microbial lipid.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here