Design, Synthesis, and Biological Evaluation of Novel 7H-[1,2,4]Triazolo[3,4-b][1,3,4]thiadiazine Inhibitors as Antitumor Agents
Author(s) -
Muhammad I. Ismail,
Samy Mohamady,
Nermin Samir,
Khaled A.M. Abouzid
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c01829
Subject(s) - chemistry , gsk 3 , annexin , kinase , docking (animal) , isothiocyanate , apoptosis , ic50 , cell cycle checkpoint , cancer cell , binding site , cell cycle , stereochemistry , biochemistry , in vitro , biology , cancer , medicine , nursing , genetics
A series of novel anticancer hydrazinotriazolothiadiazine-based derivatives were designed based on the structure-activity relationship of the previously reported anticancer triazolothiadiazines. These derivatives were synthesized and biologically screened against full NCI-60 cancer cell lines revealing compound 5l with a potential antiproliferative effect. 5l was screened over 16 kinases to study its cytotoxic mechanism which showed to inhibit glycogen synthase kinase-3 β (GSK-3β) with IC 50 equal to 0.883 μM and 14-fold selectivity over CDK2. Also, 5l increased active caspase-3 levels, induced cell cycle arrest at the G2-M phase, and increased the percentage of Annexin V-fluorescein isothiocyanate-positive apoptotic cells in PC-3 prostate cancer-treated cells. Molecular docking and dynamics were performed to predict the binding mode of 5l in the GSK-3β ATP binding site. 5l can be utilized as a starting scaffold for developing potential GSK-3β inhibitors.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom