z-logo
open-access-imgOpen Access
In Situ One-Step Synthesis of Platinum Nanoparticles Supported on Metal–Organic Frameworks as an Effective and Stable Catalyst for Selective Hydrogenation of 5-Hydroxymethylfurfural
Author(s) -
Kaixuan Wang,
Weiliang Zhao,
Qingxiao Zhang,
Hexing Li,
Fang Zhang
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c01759
Subject(s) - catalysis , in situ , 5 hydroxymethylfurfural , metal organic framework , nanoparticle , platinum , platinum nanoparticles , chemistry , metal , combinatorial chemistry , nanotechnology , materials science , chemical engineering , organic chemistry , adsorption , engineering
A facile in situ one-step route for the preparation of platinum nanoparticles supported on metal-organic frameworks (MOFs) without adding stabilizing agents was developed. The obtained 10% Pt@MOF-T3 material possessed a large surface area and high crystallinity. Meanwhile, uniform and well-dispersed platinum nanoparticles were formed inside the cavities of MOFs, which could be attributed to the efficient complexation and stabilization effect derived from the dipyridyl groups. The as-synthesized 10% Pt@MOF-T3 sample showed high activity and selectivity in the hydrogenation of 5-hydroxymethylfurfural (HMF). This excellent catalytic performance could be attributed to the synergistic effects of well-dispersed platinum nanoparticles and electron donation offered by MOFs. Meanwhile, the presence of bipyridine ligands in the MOF framework avoided the irreversible adsorption of the hydrocarbon compounds, leading to the enhanced catalytic efficiency. Besides, it was easily recycled and reused at least five times, showing good recyclability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom