Density Functional Theory (DFT) Study on the Structures and Energetic Properties of Isomers of Tetranitro-bis-1,2,4-triazoles
Author(s) -
Fang Bao,
Yi Li,
Wei Liu,
Chongchong She,
Kun Chen,
Lijie Li,
Shaohua Jin
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c01544
Subject(s) - detonation , bond dissociation energy , isomerization , density functional theory , homo/lumo , standard enthalpy of formation , detonation velocity , chemistry , computational chemistry , molecular orbital , thermal stability , dissociation (chemistry) , molecule , organic chemistry , catalysis , explosive material
A series of isomers of tetranitro-bis-1,2,4-triazoles were designed, and their electronic structures, heats of formation, densities, detonation performances, thermal stabilities, and impact sensitivities were investigated by density functional theory (DFT). The structure and energetic properties of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) were also calculated at the same level. On comparing with the detonation velocity and pressure and bond dissociation energy (BDE) of HMX, it was found that four isomers (BT2, BT5, BT6, BT7) have higher detonation performances than HMX and three isomers (BT5, BT6, BT7) have better thermal stabilities than HMX. The calculated results of impact sensitivities indicated that all of the designed isomers have more sensitivity than HMX. The calculated results of energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) indicated that all of the designed isomers were more easily excited than HMX in the chemical reaction process. In particular, 3,3',5,5'-tetranitro-1,1'-bis-1,2,4-triazoles (BT5) exhibited excellent detonation performances (9464 m s -1 , 39.44 GPa) and good thermal stability (BDE 256.81 kJ mol -1 ). The results indicated that the isomerization of tetranitro-bis-1,2,4-triazoles could improve their detonation performance or thermal stability and might lead to a promising isomer possessing both good performance and high thermal stability.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom