z-logo
open-access-imgOpen Access
Polydopamine-Modified TS-1 Zeolite Framework Nanoparticles as a Matrix for the Analysis of Small Molecules by MALDI-TOF MS
Author(s) -
Yumeng Yang,
Dan Gao,
Rui Qian,
Yuyang Jiang
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c00992
Subject(s) - chemistry , matrix assisted laser desorption/ionization , small molecule , mass spectrometry , reproducibility , matrix (chemical analysis) , analyte , desorption , maldi imaging , sample preparation , molecule , nanoparticle , chromatography , analytical chemistry (journal) , organic chemistry , materials science , nanotechnology , adsorption , biochemistry
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) using conventional organic matrices for detection of small molecules has some limitations, such as heterogeneous analyte/matrix co-crystals, as well as interference of matrices in the low-molecular-weight range. In this work, a zeolite framework nanomaterial, TS-1, was applied as a MALDI matrix for the analysis of small molecules by MALDI-MS for the first time. To improve the signal intensity and reproducibility, TS-1 was modified with polydopamine (TS-1@PDA). Using TS-1@PDA as a matrix, organic substances in the low-molecular-weight region such as amino acids, nucleosides, peptides, oligosaccharides, and fatty acids can be detected by MALDI-MS in positive ion mode. Compared with traditional organic matrices like 2,5-dihydroxybenzoic acid (2,5-DHB) and α-cyano-4-hydroxycinnamic acid (CHCA), TS-1@PDA has the advantages including the formation of uniform sample spots, small background interference at low molecular weight, and better salt tolerance. Furthermore, this matrix was employed for the analysis of endogenous glucose in urine samples, and the level of glucose was quantified with a linear range of 0-10 mM ( R 2 > 0.98). The results demonstrated that TS-1@PDA has the potential to be used as an effective MALDI matrix for the analysis of small molecules in biological samples with excellent reproducibility and moderate sensitivity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom