z-logo
open-access-imgOpen Access
Applying and Optimizing Water-Soluble, Slow-Release Nitrogen Fertilizers for Water-Saving Agriculture
Author(s) -
Yanle Guo,
Min Zhang,
Zhiguang Liu,
Chenhao Zhao,
Hao Lu,
Lei Zheng,
Li Y
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c00303
Subject(s) - fertilizer , urea , nitrogen , chemistry , brassica , agronomy , nitrogen fertilizer , controlled release , solubility , materials science , biochemistry , biology , organic chemistry , nanotechnology
A novel, eco-friendly, water-soluble, slow-release nitrogen fertilizer was developed to enhance water solubility and nitrogen use efficiency. A test was performed to determine the interactive effects of process parameters using a central composite design and response surface methodology. The quadratic polynomial mode for slow-release nitrogen was determined and yielded differences ( p < 0.01). The soluble, slow-release nitrogen fertilizers were analyzed using nuclear magnetic resonance, and the release characteristics of soil nitrogen from the fertilizer at 25 °C were also determined. The effects of the fertilizer on plant growth were determined using rape ( Brassica campestris L. ) outdoors. Conversion rates from the fertilizer to inorganic nitrogen were 30.0, 52.2, and 60.0% at 7, 24, and 40 days, respectively. This soluble, slow-release nitrogen fertilizer resulted in increased yields and nitrogen use efficiencies in rape plants compared with a standard urea fertilizer. The yields of rape plants treated with a mixture of the fertilizer and urea (BBW100%) were significantly higher than all of the other treatments. When the nitrogen application rate was reduced by 20%, the resulting "SSNF80%" and "BBW80%" treatments produced nearly the same yields as "UREA100%". Nitrogen use efficiencies for treatments with the study fertilizer ("SSNF") and the mixture bulk blend fertilizer ("BBW") were significantly higher than that with urea ("UREA") treatment by 37-52 and 42-43%, respectively. Hence, the fertilizer showed great potential for improving the production of rape and possibly other crops.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom