Improvement of the Solubility and Evaluation of the Physical Properties of an Inclusion Complex Formed by a New Ferulic Acid Derivative and γ-Cyclodextrin
Author(s) -
Nao Ikeda,
Yutaka Inoue,
Yuka Ogata,
Isamu Murata,
Meiyan Xuan,
Jun Takayama,
Takeshi Sakamoto,
Mari Okazaki,
Ikuo Kanamoto
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c00277
Subject(s) - solubility , chemistry , endothermic process , ferulic acid , derivative (finance) , cyclodextrin , powder diffraction , proton nmr , crystallography , nuclear chemistry , analytical chemistry (journal) , stereochemistry , organic chemistry , chromatography , adsorption , financial economics , economics
Ferulic acid derivative 012 (FAD012) is a ferulic acid (FA) derivative. The current study prepared a solid dispersion of FAD012 and γ-cyclodextrin (γCD) and ground it using a three-dimensional ball mill (3DGM) to prepare an inclusion complex. This study also assessed the physicochemical properties such as solubility of that complex. A Job's plot indicated that FAD012 and γCD formed an inclusion complex at a molar ratio of 1:1. Phase solubility diagrams revealed that FAD012 produced a B S diagram. According to PXRD, FAD012 produced a diffraction peak at 2θ = 7.0° and γCD produced a diffraction peak at 2θ = 9.1°. Those two peaks were not produced by the 3DGM, but new peaks (2θ = 7.3 and 16.5°) were evident. DSC patterns revealed an endothermic peak due to the melting of FAD012 at 190 °C, but no endothermic peaks were evident with the 3DGM. NIR spectra of the 3DGM indicated that the methyl group of FAD012 produced a higher peak and that the OH groups of γCD produced a higher peak. 1 H- 1 H ROESY NMR spectra (D 2 O) revealed cross peaks for protons of the methyl group of FAD012 and a proton (H-3) in the cavity of γCD, so FAD012 presumably interacts with the wide opening of the γCD torus. A solubility test (25 °C) indicated that solubility improved about 5-fold for the 3DGM in comparison to the solubility of FAD012 alone (about 140 μg/mL). Based on these findings, an FAD012/γCD complex was formed by cogrinding, and its solubility improved. These observations are expected to expand the usefulness of cogrinding of FAD012 with γCD using a 3D ball mill.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom