z-logo
open-access-imgOpen Access
Improvement of the Solubility and Evaluation of the Physical Properties of an Inclusion Complex Formed by a New Ferulic Acid Derivative and γ-Cyclodextrin
Author(s) -
Nao Ikeda,
Yutaka Inoue,
Yuka Ogata,
Isamu Murata,
Meiyan Xuan,
Jun Takayama,
Takeshi Sakamoto,
Mari Okazaki,
Ikuo Kanamoto
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.0c00277
Subject(s) - solubility , chemistry , endothermic process , ferulic acid , derivative (finance) , cyclodextrin , powder diffraction , proton nmr , crystallography , nuclear chemistry , analytical chemistry (journal) , stereochemistry , organic chemistry , chromatography , adsorption , financial economics , economics
Ferulic acid derivative 012 (FAD012) is a ferulic acid (FA) derivative. The current study prepared a solid dispersion of FAD012 and γ-cyclodextrin (γCD) and ground it using a three-dimensional ball mill (3DGM) to prepare an inclusion complex. This study also assessed the physicochemical properties such as solubility of that complex. A Job's plot indicated that FAD012 and γCD formed an inclusion complex at a molar ratio of 1:1. Phase solubility diagrams revealed that FAD012 produced a B S diagram. According to PXRD, FAD012 produced a diffraction peak at 2θ = 7.0° and γCD produced a diffraction peak at 2θ = 9.1°. Those two peaks were not produced by the 3DGM, but new peaks (2θ = 7.3 and 16.5°) were evident. DSC patterns revealed an endothermic peak due to the melting of FAD012 at 190 °C, but no endothermic peaks were evident with the 3DGM. NIR spectra of the 3DGM indicated that the methyl group of FAD012 produced a higher peak and that the OH groups of γCD produced a higher peak. 1 H- 1 H ROESY NMR spectra (D 2 O) revealed cross peaks for protons of the methyl group of FAD012 and a proton (H-3) in the cavity of γCD, so FAD012 presumably interacts with the wide opening of the γCD torus. A solubility test (25 °C) indicated that solubility improved about 5-fold for the 3DGM in comparison to the solubility of FAD012 alone (about 140 μg/mL). Based on these findings, an FAD012/γCD complex was formed by cogrinding, and its solubility improved. These observations are expected to expand the usefulness of cogrinding of FAD012 with γCD using a 3D ball mill.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom