Chemo- and Thermomechanically Configurable 3D Optical Metamaterials Constructed from Colloidal Nanocrystal Assemblies
Author(s) -
Jiacen Guo,
JiYoung Kim,
Mingliang Zhang,
Haonan Wang,
Aaron Stein,
Christopher B. Murray,
Nicholas A. Kotov,
Cherie R. Kagan
Publication year - 2019
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/acsnano.9b08452
Subject(s) - nanocrystal , materials science , metamaterial , nanotechnology , colloid , optoelectronics , chemical engineering , engineering
Nanofabrication has limited most optical metamaterials to 2D or, often with multiple patterning steps, simple 3D meta-atoms that typically have limited built-in tunability. Here, with a one-step scalable patterning process, we exploit the chemical addressability and structural adaptability of colloidal Au nanocrystal assemblies to transform 2D nanocrystal/Ti bilayers into complex, 3D-structured meta-atoms and to thermally direct their shape morphing and alter their optical properties. By tailoring the length, number, and curvature of 3D helical structures in each meta-atom, we create large-area metamaterials with chiroptical responses of as high as ∼40% transmission difference between left-hand (LCP) and right-hand (RCP) circularly polarized light (Δ T = T RCP - T LCP ) that are suitable for broadband circular polarizers and, upon thermally configuring their shape, switch the polarity of polarization rotation. These 3D optical metamaterials provide prototypes for low-cost, large-scale fabrication of optical metamaterials for ultrathin lenses, polarizers, and waveplates.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom