
A Cell-Phone-Based Acoustofluidic Platform for Quantitative Point-of-Care Testing
Author(s) -
Liying Zhang,
Zhenhua Tian,
Hunter Bachman,
Peiran Zhang,
Tony Jun Huang
Publication year - 2020
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/acsnano.9b08349
Subject(s) - phone , point of care testing , colorimetry , fluorescence , materials science , computer science , nanotechnology , optics , computer vision , philosophy , linguistics , immunology , physics , biology
Acoustofluidic methods, with advantages including simplicity of device design, biocompatible manipulation, and low power consumption, have been touted as promising tools for point-of-care (POC) testing. Here, we report a cell-phone-based acoustofluidic platform that uses acoustic radiation forces to enrich nanoscale analytes and red and green fluorescence nanoparticles (SiO 2 @R and G@SiO 2 ) as probes for POC visual testing. Thus, the color signals from the fluorescent probes are enhanced, and colorimetric sensitivity is significantly improved. As a POC demonstration, the acoustofluidic platform is used to detect hemoglobin (Hb) from human blood, resulting in a rapid and straightforward measurement of normal blood Hb levels. Combining an acoustofluidic-based nanoparticle-concentration platform with cell-phone-based colorimetry, our method introduces a potential pathway toward practical POC testing.