z-logo
open-access-imgOpen Access
Tip-Enhanced Raman Spectromicroscopy on the Angstrom Scale: Bare and CO-Terminated Ag Tips
Author(s) -
Nicholas Tallarida,
Joonhee Lee,
V. A. Apkarian
Publication year - 2017
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/acsnano.7b06022
Subject(s) - raman spectroscopy , raman scattering , materials science , nanoscopic scale , microscopy , resolution (logic) , image resolution , sharpening , optics , nanotechnology , molecular physics , optoelectronics , chemistry , physics , artificial intelligence , computer science , computer vision
The tip is key to the successful execution of tip-enhanced Raman scattering (TERS) measurements in the single molecule limit. We show that nanoscopically smooth silver tips, batch produced through field-directed sputter sharpening, reliably attain TERS with enhancement factors that reach 10 13 , as measured by the Raman spectra of single CO molecules attached to the tip apex. We validate the bare tips by demonstrating spectromicroscopy with submolecular spatial resolution and underscore that TERS is a near-field effect that does not obey simple selection rules. As a more gainful analytical approach, we introduce TERS-relayed molecular force microscopy using CO-terminated tips. By taking advantage of the large Stark tuning rate of the CO stretch, molecular structure and charges can be imaged with atomic resolution. As illustration, we image a single Ag atom adsorbed on Au(111) and show that the adatom carries +0.2e charge.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom