z-logo
open-access-imgOpen Access
Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation
Author(s) -
M. D. Mulroe,
Bernadeta Srijanto,
S. Farzad Ahmadi,
C. Patrick Collier,
Jonathan B. Boreyko
Publication year - 2017
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/acsnano.7b04481
Subject(s) - nanopillar , jumping , coalescence (physics) , materials science , nanostructure , nanotechnology , wetting , contact angle , condensation , chemical physics , jump , composite material , chemistry , physics , thermodynamics , physiology , quantum mechanics , astrobiology , biology
It was recently discovered that condensation growing on a nanostructured superhydrophobic surface can spontaneously jump off the surface, triggered by naturally occurring coalescence events. Many reports have observed that droplets must grow to a size of order 10 μm before jumping is enabled upon coalescence; however, it remains unknown how the critical jumping size relates to the topography of the underlying nanostructure. Here, we characterize the dynamic behavior of condensation growing on six different superhydrophobic nanostructures, where the topography of the nanopillars was systematically varied. The critical jumping diameter was observed to be highly dependent upon the height, diameter, and pitch of the nanopillars: tall and slender nanopillars promoted 2 μm jumping droplets, whereas short and stout nanopillars increased the critical size to over 20 μm. The topology of each surface is successfully correlated to the critical jumping diameter by constructing an energetic model that predicts how large a nucleating embryo needs to grow before it can inflate into the air with an apparent contact angle large enough for jumping. By extending our model to consider any possible surface, it is revealed that properly designed nanostructures should enable nanometric jumping droplets, which would further enhance jumping-droplet condensers for heat transfer, antifogging, and antifrosting applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom