z-logo
open-access-imgOpen Access
Quantitative Analysis of the Local Phase Transitions Induced by Laser Heating
Author(s) -
Anton V. Ievlev,
Michael A. Susner,
Michael A. McGuire,
Petro Maksymovych,
Sergei V. Kalinin
Publication year - 2015
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/acsnano.5b05818
Subject(s) - materials science , raman spectroscopy , nanoscopic scale , ferroelectricity , phase transition , laser , dielectric , microscopy , indium , piezoresponse force microscopy , nanotechnology , optoelectronics , optics , condensed matter physics , physics
Functional imaging enabled by scanning probe microscopy (SPM) allows investigations of nanoscale material properties under a wide range of external conditions, including temperature. However, a number of shortcomings preclude the use of the most common material heating techniques, thereby limiting precise temperature measurements. Here we discuss an approach to local laser heating on the micron scale and its applicability for SPM. We applied local heating coupled with piezoresponse force microscopy and confocal Raman spectroscopy for nanoscale investigations of a ferroelectric-paraelectric phase transition in the copper indium thiophosphate layered ferroelectric. Bayesian linear unmixing applied to experimental results allowed extraction of the Raman spectra of different material phases and enabled temperature calibration in the heated region. The obtained results enable a systematic approach for studying temperature-dependent material functionalities in heretofore unavailable temperature regimes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom