Nano-Enabled COVID-19 Vaccines: Meeting the Challenges of Durable Antibody Plus Cellular Immunity and Immune Escape
Author(s) -
André E. Nel,
Jeff F. Miller
Publication year - 2021
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/acsnano.1c01845
Subject(s) - immune system , vaccination , immunity , virology , acquired immune system , immunology , computational biology , biology , medicine
At the time of preparing this Perspective, large-scale vaccination for COVID-19 is in progress, aiming to bring the pandemic under control through vaccine-induced herd immunity. Not only does this vaccination effort represent an unprecedented scientific and technological breakthrough, moving us from the rapid analysis of viral genomes to design, manufacture, clinical trial testing, and use authorization within the time frame of less than a year, but it also highlights rapid progress in the implementation of nanotechnology to assist vaccine development. These advances enable us to deliver nucleic acid and conformation-stabilized subunit vaccines to regional lymph nodes, with the ability to trigger effective humoral and cellular immunity that prevents viral infection or controls disease severity. In addition to a brief description of the design features of unique cationic lipid and virus-mimicking nanoparticles for accomplishing spike protein delivery and presentation by the cognate immune system, we also discuss the importance of adjuvancy and design features to promote cooperative B- and T-cell interactions in lymph node germinal centers, including the use of epitope-based vaccines. Although current vaccine efforts have demonstrated short-term efficacy and vaccine safety, key issues are now vaccine durability and adaptability against viral variants. We present a forward-looking perspective of how vaccine design can be adapted to improve durability of the immune response and vaccine adaptation to overcome immune escape by viral variants. Finally, we consider the impact of nano-enabled approaches in the development of COVID-19 vaccines for improved vaccine design against other infectious agents, including pathogens that may lead to future pandemics.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom