z-logo
open-access-imgOpen Access
Optical and Electronic Ion Channel Monitoring from Native Human Membranes
Author(s) -
AnnaMaria Pappa,
HanYuan Liu,
Walther C. Traberg,
Quentin Thiburce,
Achilleas Savva,
Aimie Pavia,
Alberto Salleo,
Susan Daniel,
Róisı́n M. Owens
Publication year - 2020
Publication title -
acs nano
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.554
H-Index - 382
eISSN - 1936-086X
pISSN - 1936-0851
DOI - 10.1021/acsnano.0c01330
Subject(s) - pedot:pss , materials science , ion channel , fluorescence recovery after photobleaching , membrane , lipid bilayer , biophysics , nanotechnology , photobleaching , chemistry , fluorescence , biochemistry , biology , receptor , physics , layer (electronics) , quantum mechanics
Transmembrane proteins represent a major target for modulating cell activity, both in terms of therapeutics drugs and for pathogen interactions. Work on screening such therapeutics or identifying toxins has been severely limited by the lack of available methods that would give high content information on functionality (ideally multimodal) and that are suitable for high-throughput. Here, we have demonstrated a platform that is capable of multimodal (optical and electronic) screening of ligand gated ion-channel activity in human-derived membranes. The TREK-1 ion-channel was expressed within supported lipid bilayers, formed via vesicle fusion of blebs obtained from the HEK cell line overexpressing TREK-1. The resulting reconstituted native membranes were confirmed via fluorescence recovery after photobleaching to form mobile bilayers on top of films of the polymeric electroactive transducer poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS). PEDOT:PSS electrodes were then used for quantitative electrochemical impedance spectroscopy measurements of ligand-mediated TREK-1 interactions with two compounds, spadin and arachidonic acid, known to suppress and activate TREK-1 channels, respectively. PEDOT:PSS-based organic electrochemical transistors were then used for combined optical and electronic measurements of TREK-1 functionality. The technology demonstrated here is highly promising for future high-throughput screening of transmembrane protein modulators owing to the robust nature of the membrane integrated device and the highly quantitative electrical signals obtained. This is in contrast with live-cell-based electrophysiology assays ( e . g ., patch clamp) which compare poorly in terms of cost, usability, and compatibility with optical transduction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom