
Evaluating the Advantages of Using 3D-Enriched Fragments for Targeting BET Bromodomains
Author(s) -
Jennifer J. Johnson,
Christos A. Nicolaou,
Steven E. Kirberger,
Anil K. Pandey,
Haitao Hu,
William C. K. Pomerantz
Publication year - 2019
Publication title -
acs medicinal chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.065
H-Index - 66
ISSN - 1948-5875
DOI - 10.1021/acsmedchemlett.9b00414
Subject(s) - bromodomain , computer science , computational biology , chemistry , biology , biochemistry , dna , histone
Fragment-based ligand discovery has been successful in targeting diverse proteins. Despite drug-like molecules having more 3D character, traditional fragment libraries are largely composed of flat, aromatic fragments. The use of 3D-enriched fragments for enhancing library diversity is underexplored especially against protein-protein interactions. Here, we evaluate using 3D-enriched fragments against bromodomains. Bromodomains are highly ligandable, but selectivity remains challenging, particularly for bromodomain and extraterminal (BET) family bromodomains. We screened a 3D-enriched fragment library against BRD4(D1) via 1 H CPMG NMR with a protein-observed 19 F NMR secondary assay. The screen led to 29% of the hits that are selective over two related bromodomains, BRDT(D1) and BPTF, and the identification of underrepresented chemical bromodomain inhibitor scaffolds. Initial structure-activity relationship studies guided by X-ray crystallography led to a ligand-efficient thiazepane, with good selectivity and affinity for BET bromodomains. These results suggest that the incorporation of 3D-enriched fragments to increase library diversity can benefit bromodomain screening.