z-logo
open-access-imgOpen Access
Physical Bond Breaking in Associating Copolymer Liquids
Author(s) -
Ashesh Ghosh,
Kenneth S. Schweizer
Publication year - 2020
Publication title -
acs macro letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.966
H-Index - 92
ISSN - 2161-1653
DOI - 10.1021/acsmacrolett.0c00697
Subject(s) - decoupling (probability) , copolymer , phenomenology (philosophy) , polymer , relaxation (psychology) , materials science , chemical physics , diffusion , statistical physics , thermodynamics , polymer chemistry , chemistry , physics , composite material , psychology , social psychology , philosophy , epistemology , engineering , control engineering
We combine ideas from polymer and glassy liquid physics to construct a new model for the bond-breaking time scale of attractive sticker groups in associating copolymer liquids that form transient networks. The activated event is argued to be a two-step process, involving first the release of the nonsticker dynamic caging constraints that defines the primary alpha relaxation, followed by attractive stickers surmounting an association free-energy barrier subject to a local frictional resistance which can be strongly affected by relaxation-diffusion decoupling. The ideas embedded in the model produce a consistent and good description of the bond-breaking time scale for diverse polymer chemistries and architectures as a function of temperature and fraction of sticky groups. Chemically sensible values for association free energies are deduced. In strong contrast, the existing phenomenological models are shown to incur qualitative failures.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom