z-logo
open-access-imgOpen Access
High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria
Author(s) -
Justine Swann,
Victoria C. Corey,
Christina Scherer,
Nobutaka Kato,
Eamon Comer,
Micah Maetani,
Yevgeniya AntonovaKoch,
Christin Reimer,
Kerstin Gagaring,
Maureen Ibanez,
David Plouffe,
AnneMarie Zeeman,
Clemens H. M. Kocken,
Case W. McNamara,
Stuart L. Schreiber,
Brice Campo,
Elizabeth A. Winzeler,
Stephan Meister
Publication year - 2016
Publication title -
acs infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.324
H-Index - 39
ISSN - 2373-8227
DOI - 10.1021/acsinfecdis.5b00143
Subject(s) - plasmodium berghei , malaria , biology , computational biology , phenotypic screening , luciferase , high throughput screening , bioassay , plasmodium (life cycle) , parasite hosting , phenotype , bioinformatics , genetics , cell culture , immunology , gene , transfection , world wide web , computer science
In order to identify the most attractive starting points for drugs that can be used to prevent malaria, a diverse chemical space comprising tens of thousands to millions of small molecules may need to be examined. Achieving this throughput necessitates the development of efficient ultra-high-throughput screening methods. Here, we report the development and evaluation of a luciferase-based phenotypic screen of malaria exoerythrocytic-stage parasites optimized for a 1536-well format. This assay uses the exoerythrocytic stage of the rodent malaria parasite, Plasmodium berghei , and a human hepatoma cell line. We use this assay to evaluate several biased and unbiased compound libraries, including two small sets of molecules (400 and 89 compounds, respectively) with known activity against malaria erythrocytic-stage parasites and a set of 9886 diversity-oriented synthesis (DOS)-derived compounds. Of the compounds screened, we obtain hit rates of 12-13 and 0.6% in preselected and naïve libraries, respectively, and identify 52 compounds with exoerythrocytic-stage activity less than 1 μM and having minimal host cell toxicity. Our data demonstrate the ability of this method to identify compounds known to have causal prophylactic activity in both human and animal models of malaria, as well as novel compounds, including some exclusively active against parasite exoerythrocytic stages.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here