z-logo
open-access-imgOpen Access
Structural Optimization of 2,3-Dihydro-1H-cyclopenta[b]quinolines Targeting the Noncatalytic RVxF Site of Protein Phosphatase 1 for HIV-1 Inhibition
Author(s) -
Xionghao Lin,
Ayyiliath M. Sajith,
Songping Wang,
Namita Kumari,
M.S. Choy,
Asrar Ahmad,
Dana R. Cadet,
Xinbin Gu,
Andrey Ivanov,
Wolfgang Peti,
Amol A. Kulkarni,
Sergeï Nekhai
Publication year - 2020
Publication title -
acs infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.324
H-Index - 39
ISSN - 2373-8227
DOI - 10.1021/acsinfecdis.0c00511
Subject(s) - transcription factor , protein phosphatase 1 , phosphatase , biology , protein phosphatase 2 , human immunodeficiency virus (hiv) , binding site , pathogenesis , virology , drug discovery , transcription (linguistics) , microbiology and biotechnology , immunology , biochemistry , phosphorylation , gene , linguistics , philosophy
Combination antiretroviral therapy (cART) suppresses human immunodeficiency virus-1 (HIV-1) replication but is unable to permanently eradicate HIV-1. Importantly, cART does not target HIV-1 transcription, which is reactivated in latently infected reservoirs, leading to HIV-1 pathogenesis including non-infectious lung, cardiovascular, kidney, and neurodegenerative diseases. To address the limitations of cART and to prevent HIV-1-related pathogenesis, we developed small molecules to target the noncatalytic RVxF-accommodating site of protein phosphatase-1 (PP1) to prevent HIV-1 transcription activation. The PP1 RVxF-accommodating site is critical for the recruitment of regulatory and substrate proteins to PP1. Here, we confirm that our previously developed 1E7-03 compound binds to the PP1 RVxF-accommodating site. Iterative chemical alterations to 1E7-03 furnished a new analogue, HU-1a , with enhanced HIV-1 inhibitory activity and improved metabolic stability compared to 1E7-03 . In a Split NanoBit competition assay, HU-1a primarily bound to the PP1 RVxF-accommodating site. In conclusion, our study identified HU-1a as a promising HIV-1 transcription inhibitor and showed that the PP1 RVxF-accommodating site is a potential drug target for the development of novel HIV-1 transcription inhibitors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom