Folding Then Binding vs Folding Through Binding in Macrocyclic Peptide Inhibitors of Human Pancreatic α-Amylase
Author(s) -
Leander Goldbach,
Bram J. A. Vermeulen,
S. Caner,
Minglong Liu,
Christina Tysoe,
Lieke van Gijzel,
Ryoji Yoshisada,
Mikaël Trellet,
Hugo van Ingen,
Gary D. Brayer,
Alexandre M. J. J. Bonvin,
Seino A. K. Jongkees
Publication year - 2019
Publication title -
acs chemical biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 111
eISSN - 1554-8937
pISSN - 1554-8929
DOI - 10.1021/acschembio.9b00290
Subject(s) - folding (dsp implementation) , amylase , peptide , chemistry , protein folding , binding site , biochemistry , computational biology , biology , enzyme , electrical engineering , engineering
De novo macrocyclic peptides, derived using selection technologies such as phage and mRNA display, present unique and unexpected solutions to challenging biological problems. This is due in part to their unusual folds, which are able to present side chains in ways not available to canonical structures such as α-helices and β-sheets. Despite much recent interest in these molecules, their folding and binding behavior remains poorly characterized. In this work, we present cocrystallization, docking, and solution NMR structures of three de novo macrocyclic peptides that all bind as competitive inhibitors with single-digit nanomolar K i to the active site of human pancreatic α-amylase. We show that a short stably folded motif in one of these is nucleated by internal hydrophobic interactions in an otherwise dynamic conformation in solution. Comparison of the solution structures with a target-bound structure from docking indicates that stabilization of the bound conformation is provided through interactions with the target protein after binding. These three structures also reveal a surprising functional convergence to present a motif of a single arginine sandwiched between two aromatic residues in the interactions of the peptide with the key catalytic residues of the enzyme, despite little to no other structural homology. Our results suggest that intramolecular hydrophobic interactions are important for priming binding of small macrocyclic peptides to their target and that high rigidity is not necessary for high affinity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom