In Situ Target Engagement Studies in Adherent Cells
Author(s) -
Hanna Axelsson,
Helena Almqvist,
Magdalena Otrocka,
Michaela Vallin,
Sara Lundqvist,
Pia Hansson,
Ulla Karlsson,
Thomas Lundbäck,
Brinton SeashoreLudlow
Publication year - 2018
Publication title -
acs chemical biology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 111
eISSN - 1554-8937
pISSN - 1554-8929
DOI - 10.1021/acschembio.7b01079
Subject(s) - in situ , microbiology and biotechnology , computational biology , biology , chemistry , organic chemistry
A prerequisite for successful drugs is effective binding of the desired target protein in the complex environment of a living system. Drug-target engagement has typically been difficult to monitor in physiologically relevant models, and with current methods, especially, while maintaining spatial information. One recent technique for quantifying drug-target engagement is the cellular thermal shift assay (CETSA), in which ligand-induced protein stabilization is measured after a heat challenge. Here, we describe a CETSA protocol in live A431 cells for p38α (MAPK14), where remaining soluble protein is detected in situ, using high-content imaging in 384-well, microtiter plates. We validate this assay concept using a number of known p38α inhibitors and further demonstrate the potential of this technology for chemical probe and drug discovery purposes by performing a small pilot screen for novel p38α binders. Importantly, this protocol creates a workflow that is amenable to adherent cells in their native state and yields spatially resolved target engagement information measurable at the single-cell level.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom