
Profiling Esterases in Mycobacterium tuberculosis Using Far-Red Fluorogenic Substrates
Author(s) -
Katie R. Tallman,
Samantha Levine,
Kimberly E. Beatty
Publication year - 2016
Publication title -
acs chemical biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 111
eISSN - 1554-8937
pISSN - 1554-8929
DOI - 10.1021/acschembio.6b00233
Subject(s) - mycobacterium tuberculosis , lipase , esterase , enzyme , microbiology and biotechnology , ether , bacillus subtilis , mycobacterium bovis , biochemistry , chemistry , mycobacterium , biology , bacteria , tuberculosis , organic chemistry , medicine , genetics , pathology
Enzyme-activated, fluorogenic probes are powerful tools for studying bacterial pathogens, including Mycobacterium tuberculosis (Mtb). In prior work, we reported two 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) (DDAO)-derived acetoxymethyl ether probes for esterase and lipase detection. Here, we report four-carbon (C4) and eight-carbon (C8) acyloxymethyl ether derivatives, which are longer-chain fluorogenic substrates. These new probes demonstrate greater stability and lipase reactivity than the two-carbon (C2) acetoxymethyl ether-masked substrates. We used these new C4 and C8 probes to profile esterases and lipases from Mtb. The C8-masked probes revealed a new esterase band in gel-resolved Mtb lysates that was not present in lysates from nonpathogenic M. bovis (bacillus Calmette-Guérin), a close genetic relative. We identified this Mtb-specific enzyme as the secreted esterase Culp1 (Rv1984c). Our C4- and C8-masked probes also produced distinct Mtb banding patterns in lysates from Mtb-infected macrophages, demonstrating the potential of these probes for detecting Mtb esterases that are active during infections.