z-logo
open-access-imgOpen Access
Genetic Incorporation of Two Mutually Orthogonal Bioorthogonal Amino Acids That Enable Efficient Protein Dual-Labeling in Cells
Author(s) -
Riley M. Bednar,
Subhashis Jana,
Sahiti Kuppa,
Rachel Franklin,
Joseph S. Beckman,
Edwin Antony,
Richard B. Cooley,
Ryan A. Mehl
Publication year - 2021
Publication title -
acs chemical biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 111
eISSN - 1554-8937
pISSN - 1554-8929
DOI - 10.1021/acschembio.1c00649
Subject(s) - bioorthogonal chemistry , dual (grammatical number) , amino acid , biochemistry , computational biology , chemistry , microbiology and biotechnology , biology , combinatorial chemistry , click chemistry , art , literature
The ability to site-specifically modify proteins at multiple sites in vivo will enable the study of protein function in its native environment with unprecedented levels of detail. Here, we present a versatile two-step strategy to meet this goal involving site-specific encoding of two distinct noncanonical amino acids bearing bioorthogonal handles into proteins in vivo followed by mutually orthogonal labeling. This general approach, that we call d ual e ncoding a nd l abeling (DEAL), allowed us to efficiently encode tetrazine- and azide-bearing amino acids into a protein and demonstrate for the first time that the bioorthogonal labeling reactions with strained alkene and alkyne labels can function simultaneously and intracellularly with high yields when site-specifically encoded in a single protein. Using our DEAL system, we were able to perform topologically defined protein-protein cross-linking, intramolecular stapling, and site-specific installation of fluorophores all inside living Escherichia coli cells, as well as study the DNA-binding properties of yeast Replication Protein A in vitro . By enabling the efficient dual modification of proteins in vivo , this DEAL approach provides a tool for the characterization and engineering of proteins in vivo .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom