GTP-State-Selective Cyclic Peptide Ligands of K-Ras(G12D) Block Its Interaction with Raf
Author(s) -
Ziyang Zhang,
Rong Gao,
Qi Hu,
Hayden Peacock,
D. Matthew Peacock,
Shizhong Dai,
Kevan M. Shokat,
Hiroaki Suga
Publication year - 2020
Publication title -
acs central science
Language(s) - English
Resource type - Journals
eISSN - 2374-7951
pISSN - 2374-7943
DOI - 10.1021/acscentsci.0c00514
Subject(s) - gtp' , peptide , chemistry , threonine , mutant , tripeptide , wild type , kinase , stereochemistry , cancer research , biology , biochemistry , phosphorylation , serine , gene , enzyme
We report the identification of three cyclic peptide ligands of K-Ras(G12D) using an integrated in vitro translation-mRNA display selection platform. These cyclic peptides show preferential binding to the GTP-bound state of K-Ras(G12D) over the GDP-bound state and block Ras-Raf interaction. A co-crystal structure of peptide KD2 with K-Ras(G12D)·GppNHp reveals that this peptide binds in the Switch II groove region with concomitant opening of the Switch II loop and a 40° rotation of the α2 helix, and that a threonine residue (Thr10) on KD2 has direct access to the mutant aspartate (Asp12) on K-Ras. Replacing this threonine with non-natural amino acids afforded peptides with improved potency at inhibiting the interaction between Raf1-RBD and K-Ras(G12D) but not wildtype K-Ras. The union of G12D over wildtype selectivity and GTP state/GDP state selectivity is particularly desirable, considering that oncogenic K-Ras(G12D) exists predominantly in the GTP state in cancer cells, and wildtype K-Ras signaling is important for the maintenance of healthy cells.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom